Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.285
1.
Article En | MEDLINE | ID: mdl-38723257

BACKGROUND AND AIM: This study evaluated the association between rs1396409 and rs9883258 and the risk of schizophrenia (SCZ) and treatment outcomes in Egyptian patients. METHODS: This study included 88 patients with SCZ and 88 healthy controls. Lipid profile was assayed. Genotyping of rs1396409 and rs9883258 polymorphisms was analyzed using real-time PCR. RESULTS: The rs1396409 AG genotype frequency was significantly associated with SCZ risk (p = 0.002). Also, significant increased risk of SCZ was observed under allelic (p = 0.001), dominant (p = 0.001) and overdominant (p = 0.001) genetic model of rs1396409. However, rs9883258 AA genotype revealed nonsignificant association with SCZ. Cases with the rs1396409AG genotype exhibited hypertriglyceridemia (p < 0.001) and hypercholesterolemia (p = 0.001). In total, 72.3% and 74.5% of the cases presented with rs1396409 AG have negative symptoms (p = 0.022) and exhibited poor drug response (p = 0.023), respectively; all cases with rs1396409 GG genotype attempted suicide (p = 0.002) and are drug-free (p = 0.003). SCZ patients with negative symptoms had hypercholesterolemia (p = 0.008) mainly low-density lipoproteins (LDLc) (p = 0.016), and those with cognitive symptoms presented with low level of high-density lipoprotein (HDLc) (p = 0.023). Moreover, the multivariate regression analysis revealed that both rs1396409 G allele and HDLc were predictors of SCZ (p = 0.003 and 0.001, resp.). CONCLUSION: The current study concluded that metabotropic glutamate receptor 7 (GRM7) rs1396409 AG could be a potential biomarker for SCZ diagnosis. It also revealed an independent association between the GRM7 rs1396409 G allele, HDLc and SCZ development.


Polymorphism, Single Nucleotide , Receptors, Metabotropic Glutamate , Schizophrenia , Humans , Schizophrenia/genetics , Male , Female , Egypt , Adult , Receptors, Metabotropic Glutamate/genetics , Treatment Outcome , Genetic Predisposition to Disease , Middle Aged , Genotype , Case-Control Studies , Alleles , Genetic Association Studies
2.
CNS Neurosci Ther ; 30(4): e14723, 2024 04.
Article En | MEDLINE | ID: mdl-38676295

AIMS: This study aimed to investigate the relationship between ulcerative colitis (UC) and anxiety and explore its central mechanisms using colitis mice. METHODS: Anxiety-like behavior was assessed in mice induced by 3% dextran sodium sulfate (DSS) using the elevated plus maze and open-field test. The spatial transcriptome of the hippocampus was analyzed to assess the distribution of excitatory and inhibitory synapses, and Toll-like receptor 4 (TLR4) inhibitor TAK-242 (10 mg/kg) and AAV virus interference were used to examine the role of peripheral inflammation and central molecules such as Glutamate Receptor Metabotropic 1 (GRM1) in mediating anxiety behavior in colitis mice. RESULTS: DSS-induced colitis increased anxiety-like behaviors, which was reduced by TAK-242. Spatial transcriptome analysis of the hippocampus showed an excitatory-inhibitory imbalance mediated by glutamatergic synapses, and GRM1 in hippocampus was identified as a critical mediator of anxiety behavior in colitis mice via differential gene screening and AAV virus interference. CONCLUSION: Our work suggests that the hippocampus plays an important role in brain anxiety caused by peripheral inflammation, and over-excitation of hippocampal glutamate synapses by GRM1 activation induces anxiety-like behavior in colitis mice. These findings provide new insights into the central mechanisms underlying anxiety in UC and may contribute to the development of novel therapeutic strategies for UC-associated anxiety.


Anxiety , Hippocampus , Inflammation , Mice, Inbred C57BL , Receptors, Metabotropic Glutamate , Animals , Hippocampus/metabolism , Mice , Anxiety/metabolism , Male , Receptors, Metabotropic Glutamate/metabolism , Receptors, Metabotropic Glutamate/genetics , Inflammation/metabolism , Dextran Sulfate/toxicity , Colitis/chemically induced , Colitis/metabolism , Colitis/pathology
3.
Sci Rep ; 14(1): 8558, 2024 04 12.
Article En | MEDLINE | ID: mdl-38609494

Glutamate (Glu) is important for memory and learning. Hence, Glu imbalance is speculated to affect autism spectrum disorder (ASD) pathophysiology. The action of Glu is mediated through receptors and we analyzed four metabotropic Glu receptors (mGluR/GRM) in Indo-Caucasoid families with ASD probands and controls. The trait scores of the ASD probands were assessed using the Childhood Autism Rating Scale2-ST. Peripheral blood was collected, genomic DNA isolated, and GRM5 rs905646, GRM6 rs762724 & rs2067011, and GRM7 rs3792452 were analyzed by PCR/RFLP or Taqman assay. Expression of mGluRs was measured in the peripheral blood by qPCR. Significantly higher frequencies of rs2067011 'A' allele/ AA' genotype were detected in the probands. rs905646 'A 'exhibited significantly higher parental transmission. Genetic variants showed independent as well as interactive effects in the probands. Receptor expression was down-regulated in the probands, especially in the presence of rs905646 'AA', rs762724 'TT', rs2067011 'GG', and rs3792452 'CC'. Trait scores were higher in the presence of rs762724 'T' and rs2067011 'G'. Therefore, in the presence of risk genetic variants, down-regulated mGluR expression may increase autistic trait scores. Since our investigation was confined to the peripheral system, in-depth exploration involving peripheral as well as central nervous systems may validate our observation.


Autism Spectrum Disorder , Autistic Disorder , Receptors, Metabotropic Glutamate , Humans , Child , Autistic Disorder/genetics , Autism Spectrum Disorder/genetics , Gene Expression , Glutamic Acid , Receptors, Metabotropic Glutamate/genetics
4.
J Biol Chem ; 300(4): 107119, 2024 Apr.
Article En | MEDLINE | ID: mdl-38428819

Synaptic transmission from retinal photoreceptors to downstream ON-type bipolar cells (BCs) depends on the postsynaptic metabotropic glutamate receptor mGluR6, located at the BC dendritic tips. Glutamate binding to mGluR6 initiates G-protein signaling that ultimately leads to BC depolarization in response to light. The mGluR6 receptor also engages in trans-synaptic interactions with presynaptic ELFN adhesion proteins. The roles of post-translational modifications in mGluR6 trafficking and function are unknown. Treatment with glycosidase enzymes PNGase F and Endo H demonstrated that both endogenous and heterologously expressed mGluR6 contain complex N-glycosylation acquired in the Golgi. Pull-down experiments with ELFN1 and ELFN2 extracellular domains revealed that these proteins interact exclusively with the complex glycosylated form of mGluR6. Mutation of the four predicted N-glycosylation sites, either singly or in combination, revealed that all four sites are glycosylated. Single mutations partially reduced, but did not abolish, surface expression in heterologous cells, while triple mutants had little or no surface expression, indicating that no single glycosylation site is necessary or sufficient for plasma membrane trafficking. Mutation at N445 severely impaired both ELFN1 and ELFN2 binding. All single mutants exhibited dendritic tip enrichment in rod BCs, as did the triple mutant with N445 as the sole N-glycosylation site, demonstrating that glycosylation at N445 is sufficient but not necessary for dendritic tip localization. The quadruple mutant was completely mislocalized. These results reveal a key role for complex N-glycosylation in regulating mGluR6 trafficking and ELFN binding, and by extension, function of the photoreceptor synapses.


Receptors, Metabotropic Glutamate , Glycosylation , Receptors, Metabotropic Glutamate/metabolism , Receptors, Metabotropic Glutamate/genetics , Animals , Humans , HEK293 Cells , Synaptic Transmission/physiology , Retinal Bipolar Cells/metabolism , Synapses/metabolism , Protein Transport , Protein Processing, Post-Translational , Mice
5.
J Clin Invest ; 134(5)2024 Mar 01.
Article En | MEDLINE | ID: mdl-38426491

Fragile X syndrome (FXS), the most common inherited cause of intellectual disability and the single-gene cause of autism, is caused by decreased expression of the fragile X messenger ribonucleoprotein protein (FMRP), a ribosomal-associated RNA-binding protein involved in translational repression. Extensive preclinical work in several FXS animal models supported the therapeutic potential of decreasing metabotropic glutamate receptor (mGluR) signaling to correct translation of proteins related to synaptic plasticity; however, multiple clinical trials failed to show conclusive evidence of efficacy. In this issue of the JCI, Berry-Kravis and colleagues conducted the FXLEARN clinical trial to address experimental design concerns from previous trials. Unfortunately, despite treatment of young children with combined pharmacological and learning interventions for a prolonged period, no efficacy of blocking mGluR activity was observed. Future systematic evaluation of potential therapeutic approaches should evaluate consistency between human and animal pathophysiological mechanisms, utilize innovative clinical trial design from FXLEARN, and incorporate translatable biomarkers.


Fragile X Syndrome , Intellectual Disability , Receptors, Metabotropic Glutamate , Animals , Child , Humans , Child, Preschool , Fragile X Syndrome/drug therapy , Fragile X Syndrome/genetics , Fragile X Mental Retardation Protein/genetics , Fragile X Mental Retardation Protein/metabolism , Fragile X Mental Retardation Protein/therapeutic use , Receptors, Metabotropic Glutamate/genetics , Receptors, Metabotropic Glutamate/metabolism , Neuronal Plasticity
6.
Transl Psychiatry ; 14(1): 113, 2024 Feb 23.
Article En | MEDLINE | ID: mdl-38396013

Antipsychotic-induced low availability of group II metabotropic glutamate receptors (including mGlu2R and mGlu3R) in brains of schizophrenia patients may explain the limited efficacy of mGlu2/3R ligands in clinical trials. Studies evaluating mGlu2/3R levels in well-designed, large postmortem brain cohorts are needed to address this issue. Postmortem samples from the dorsolateral prefrontal cortex of 96 schizophrenia subjects and matched controls were collected. Toxicological analyses identified cases who were (AP+) or were not (AP-) receiving antipsychotic treatment near the time of death. Protein and mRNA levels of mGlu2R and mGlu3R, as well as GRM2 and GRM3 promoter-attached histone posttranslational modifications, were quantified. Experimental animal models were used to compare with data obtained in human tissues. Compared to matched controls, schizophrenia cortical samples had lower mGlu2R protein amounts, regardless of antipsychotic medication. Downregulation of mGlu3R was observed in AP- schizophrenia subjects only. Greater predicted occupancy values of dopamine D2 and serotonin 5HT2A receptors correlated with higher density of mGlu3R, but not mGlu2R. Clozapine treatment and maternal immune activation in rodents mimicked the mGlu2R, but not mGlu3R regulation observed in schizophrenia brains. mGlu2R and mGlu3R mRNA levels, and the epigenetic control mechanisms did not parallel the alterations at the protein level, and in some groups correlated inversely. Insufficient cortical availability of mGlu2R and mGlu3R may be associated with schizophrenia. Antipsychotic treatment may normalize mGlu3R, but not mGlu2R protein levels. A model in which epigenetic feedback mechanisms controlling mGlu3R expression are activated to counterbalance mGluR loss of function is described.


Antipsychotic Agents , Receptors, Metabotropic Glutamate , Schizophrenia , Animals , Humans , Antipsychotic Agents/pharmacology , Antipsychotic Agents/therapeutic use , Schizophrenia/drug therapy , Schizophrenia/genetics , Schizophrenia/metabolism , Receptors, Metabotropic Glutamate/genetics , Brain/metabolism , Epigenesis, Genetic , RNA, Messenger/metabolism
7.
Sci Adv ; 9(49): eadi8076, 2023 12 08.
Article En | MEDLINE | ID: mdl-38055809

The metabotropic glutamate receptors (mGluRs) are family C, dimeric G protein-coupled receptors (GPCRs), which play critical roles in synaptic transmission. Despite an increasing appreciation of the molecular diversity of this family, how distinct mGluR subtypes are regulated remains poorly understood. We reveal that different group II/III mGluR subtypes show markedly different beta-arrestin (ß-arr) coupling and endocytic trafficking. While mGluR2 is resistant to internalization and mGluR3 shows transient ß-arr coupling, which enables endocytosis and recycling, mGluR8 and ß-arr form stable complexes, which leads to efficient lysosomal targeting and degradation. Using chimeras and mutagenesis, we pinpoint carboxyl-terminal domain regions that control ß-arr coupling and trafficking, including the identification of an mGluR8 splice variant with impaired internalization. We then use a battery of high-resolution fluorescence assays to find that heterodimerization further expands the diversity of mGluR regulation. Together, this work provides insight into the relationship between GPCR/ß-arr complex formation and trafficking while revealing diversity and intricacy in the regulation of mGluRs.


Receptors, Metabotropic Glutamate , beta-Arrestins/metabolism , Receptors, Metabotropic Glutamate/genetics , Receptors, Metabotropic Glutamate/metabolism
8.
Metab Brain Dis ; 38(8): 2765-2771, 2023 Dec.
Article En | MEDLINE | ID: mdl-37882887

Obesity is a worldwide problem in which genetic factors have a prominent role. We have selected two single nucleotide polymorphisms (SNPs) within glutamate metabotropic receptor 7 (GRM7) gene, namely rs6782011 and rs779867 to weigh their association with obesity in an Iranian cohort. The distribution of rs6782011 alleles was significantly different in the obese patients from normal controls (P < 0.0001; 434 obese patients vs. 297 normal controls). Distribution of alleles was also measured between sex-based groups of obese patients and controls. We detected remarkable differences between female obese cases and female control subjects (P < 0.0001; 374 female obese cases vs. 216 female normal controls); nevertheless, the difference in allele distribution was not significant for male cases compared with corresponding normal controls (p = 0.47; 60 male patients vs. 81 normal males). Contrariwise, distribution of rs779867 alleles was not significantly different between total obese patients compared with normal controls (P = 0.21; 434 obese patients vs. 297 normal BMI controls). There was also no significant difference for female and male obese patients compared with female and male normal BMI controls. Thus, GRM7 can be considered as a risk locus for obesity.


Receptors, Metabotropic Glutamate , Female , Humans , Male , Alleles , Case-Control Studies , Genotype , Iran , Obesity/genetics , Obesity/surgery , Polymorphism, Single Nucleotide/genetics , Receptors, Metabotropic Glutamate/genetics
9.
Transl Psychiatry ; 13(1): 329, 2023 Oct 25.
Article En | MEDLINE | ID: mdl-37880287

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by core symptoms that consist of social deficits and repetitive behaviors. Unfortunately, no effective medication is available thus far to target the core symptoms of ASD, since the pathogenesis remains largely unknown. To investigate the pathogenesis of the core symptoms in ASD, we constructed Shank1 P1812L-knock-in (KI) mice corresponding to a recurrent ASD-related mutation, SHANK1 P1806L, to achieve construct validity and face validity. Shank1 P1812L-KI heterozygous (HET) mice presented with social deficits and repetitive behaviors without the presence of confounding comorbidities. HET mice also exhibited downregulation of metabotropic glutamate receptor (mGluR1) and associated signals, along with structural abnormalities in the dendritic spines and postsynaptic densities. Combined with findings from Shank1 R882H-KI mice, our study confirms that mGluR1-mediated signaling dysfunction is a pivotal mechanism underlying the core symptoms of ASD. Interestingly, Shank1 P1812L-KI homozygous (HOM) mice manifested behavioral signs of impaired long-term memory rather than autistic-like core traits; thus, their phenotype was markedly different from that of Shank1 P1812L-KI HET mice. Correspondingly, at the molecular level, Shank1 P1812L-KI HOM displayed upregulation of AMPA receptor (GluA2)-related signals. The different patterns of protein changes in HOM and HET mice may explain the differences in behaviors. Our study emphasizes the universality of mGluR1-signaling hypofunction in the pathogenesis of the core symptoms in ASD, providing a potential target for therapeutic drugs. The precise correspondence between genotype and phenotype, as shown in HOM and HET mice, indicates the importance of reproducing disease-related genotypes in mouse models.


Autism Spectrum Disorder , Autistic Disorder , Receptors, Metabotropic Glutamate , Animals , Mice , Autistic Disorder/genetics , Down-Regulation , Receptors, Metabotropic Glutamate/genetics , Disease Models, Animal , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism
10.
Sheng Li Xue Bao ; 75(4): 529-536, 2023 Aug 25.
Article Zh | MEDLINE | ID: mdl-37583040

The aim of the present study was to explore the role of group II and III metabotropic glutamate receptors (mGluRs) in carotid body plasticity induced by chronic intermittent hypoxia (CIH) in rats. Sprague Dawley (SD) rats were treated with CIH in Oxycycler A84 hypoxic chamber for 4 weeks, and the tail artery blood pressure was measured at the end of model preparation. RT-qPCR was performed to examine the mRNA expression levels of mGluR2/3/8 in rat carotid body. Carotid sinus nerve activity was detected by ex vivo carotid sinus nerve discharge recording technique, and acute intermittent hypoxia (AIH) was administered to induce carotid body sensory long-term facilitation (sLTF), in order to observe the role of group II and group III mGluRs in carotid body plasticity induced by CIH. The results showed that: 1) After 4 weeks of CIH exposure, the blood pressure of rats increased significantly; 2) CIH down-regulated the mRNA levels of mGluR2/3, and up-regulated the mRNA level of mGluR8 in the carotid body; 3) AIH induced sLTF in carotid body of CIH group. In the CIH group, activation of group II mGluRs had no effect on sLTF of carotid body, while activation of group III mGluRs completely inhibited sLTF. These results suggest that CIH increases blood pressure in rats, and group III mGluRs play an inhibitory role in CIH-induced carotid body plasticity in rats.


Carotid Body , Receptors, Metabotropic Glutamate , Rats , Animals , Carotid Body/metabolism , Rats, Sprague-Dawley , Hypoxia , Receptors, Metabotropic Glutamate/genetics , Receptors, Metabotropic Glutamate/metabolism , RNA, Messenger/metabolism
11.
Sci Adv ; 9(22): eadf1378, 2023 06 02.
Article En | MEDLINE | ID: mdl-37267369

Allosteric modulators bear great potential to fine-tune neurotransmitter action. Promising targets are metabotropic glutamate (mGlu) receptors, which are associated with numerous brain diseases. Orthosteric and allosteric ligands act in synergy to control the activity of these multidomain dimeric GPCRs. Here, we analyzed the effect of such molecules on the concerted conformational changes of full-length mGlu2 at the single-molecule level. We first established FRET sensors through genetic code expansion combined with click chemistry to monitor conformational changes on live cells. We then used single-molecule FRET and show that orthosteric agonist binding leads to the stabilization of most of the glutamate binding domains in their closed state, while the reorientation of the dimer into the active state remains partial. Allosteric modulators, interacting with the transmembrane domain, are required to stabilize the fully reoriented active dimer. These results illustrate how concerted conformational changes within multidomain proteins control their activity, and how these are modulated by allosteric ligands.


Receptors, Metabotropic Glutamate , Allosteric Regulation , Ligands , Receptors, Metabotropic Glutamate/genetics , Receptors, Metabotropic Glutamate/agonists , Receptors, Metabotropic Glutamate/metabolism , Glutamates
12.
Mol Cell Neurosci ; 126: 103875, 2023 09.
Article En | MEDLINE | ID: mdl-37352898

Metabotropic glutamate receptor 6 (mGluR6) predominantly localizes to the postsynaptic sites of retinal ON-bipolar cells, at which it recognizes glutamate released from photoreceptors. The C-terminal domain (CTD) of mGluR6 contains a cluster of basic amino acids resembling motifs for endoplasmic reticulum (ER) retention. We herein investigated whether these basic residues are involved in regulating the subcellular localization of mGluR6 in 293T cells expressing mGluR6 CTD mutants using immunocytochemistry, immunoprecipitation, and flow cytometry. We showed that full-length mGluR6 localized to the ER and cell surface, whereas mGluR6 mutants with 15- and 20-amino acid deletions from the C terminus localized to the ER, but were deficient at the cell surface. We also demonstrated that the cell surface deficiency of mGluR6 mutants was rescued by introducing an alanine substitution at basic residues within the CTD. The surface-deficient mGluR6 mutant still did not localize to the cell surface and was retained in the ER when co-expressed with surface-expressible constructs, including full-length mGluR6, even though surface-deficient and surface-expressible constructs formed heteromeric complexes. The co-expression of the surface-deficient mGluR6 mutant reduced the surface levels of surface-expressible constructs. These results indicate that basic residues in the mGluR6 CTD served as ER retention signals. We suggest that exposed ER retention motifs in the aberrant assembly containing truncated or misfolded mGluR6 prevent these protein complexes from being transported to the cell surface.


Receptors, Metabotropic Glutamate , Receptors, Metabotropic Glutamate/genetics , Receptors, Metabotropic Glutamate/metabolism , Retinal Bipolar Cells/metabolism , Glutamic Acid/metabolism , Endoplasmic Reticulum/metabolism
13.
Am J Physiol Cell Physiol ; 325(1): C79-C89, 2023 07 01.
Article En | MEDLINE | ID: mdl-37184233

G protein-coupled receptors (GPCRs) represent the largest family of membrane proteins and are important drug targets. GPCRs are allosteric machines that transduce an extracellular signal to the cell by activating heterotrimeric G proteins. Herein, we summarize the recent advancements in the molecular activation mechanism of the γ-aminobutyric acid type B (GABAB) and metabotropic glutamate (mGlu) receptors, the most important class C GPCRs that modulate synaptic transmission in the brain. Both are mandatory dimers, this quaternary structure being needed for their function The structures of these receptors in different conformations and in complexes with G proteins have revealed their asymmetric activation. This asymmetry is further highlighted by the recent discovery of mGlu heterodimers, where the eight mGlu subunits can form specific and functional heterodimers. Finally, the development of allosteric modulators has revealed new possibilities for regulating the function of these receptors by targeting the transmembrane dimer interface. This family of receptors never ceases to astonish and serve as models to better understand the diversity and asymmetric functioning of GPCRs.NEW & NOTEWORTHY γ-aminobutyric acid type B (GABAB) and metabotropic glutamate (mGlu) receptors form constitutive dimers, which are required for their function. They serve as models to better understand the diversity and activation of G protein-coupled receptors (GPCRs). The structures of these receptors in different conformations and in complexes with G proteins have revealed their asymmetric activation. This asymmetry is further highlighted by the recent discovery of specific and functional mGlu heterodimers. Allosteric modulators can be developed to target the transmembrane interface and modulate the asymmetry.


Receptors, Metabotropic Glutamate , Receptors, Metabotropic Glutamate/genetics , Receptors, Metabotropic Glutamate/chemistry , Receptors, Metabotropic Glutamate/metabolism , Allosteric Regulation , Receptors, G-Protein-Coupled , Synaptic Transmission , Glutamic Acid , Receptors, GABA-B/genetics , Receptors, GABA-B/metabolism
14.
Cell Rep Med ; 4(4): 100960, 2023 04 18.
Article En | MEDLINE | ID: mdl-37003259

Metabotropic glutamate receptor 1 (mGluR1), a key mediator of glutamatergic signaling, is frequently overexpressed in tumor cells and is an attractive drug target for most cancers. Here, we present a targeted radiopharmaceutical therapy strategy that antagonistically recognizes mGluR1 and eradicates mGluR1+ human tumors by harnessing a small-molecule alpha (α)-emitting radiopharmaceutical, 211At-AITM. A single dose of 211At-AITM (2.96 MBq) in mGluR1+ cancers exhibits long-lasting in vivo antitumor efficacy across seven subtypes of four of the most common tumors, namely, breast cancer, pancreatic cancer, melanoma, and colon cancers, with little toxicity. Moreover, complete regression of mGluR1+ breast cancer and pancreatic cancer is observed in approximate 50% of tumor-bearing mice. Mechanistically, the functions of 211At-AITM are uncovered in downregulating mGluR1 oncoprotein and inducing senescence of tumor cells with a reprogrammed senescence-associated secretory phenotype. Our findings suggest α-radiopharmaceutical therapy with 211At-AITM can be a useful strategy for mGluR1+ pan-cancers, regardless of their tissue of origin.


Breast Neoplasms , Melanoma , Receptors, Metabotropic Glutamate , Mice , Humans , Animals , Female , Radiopharmaceuticals/therapeutic use , Receptors, Metabotropic Glutamate/genetics , Receptors, Metabotropic Glutamate/therapeutic use , Breast Neoplasms/genetics
15.
Pharmacol Biochem Behav ; 225: 173546, 2023 04.
Article En | MEDLINE | ID: mdl-37003303

The metabotropic glutamate receptor 7 (mGlu7), encoded by the GRM7 gene in humans, is a presynaptic, G protein-coupled glutamate receptor that is essential for modulating neurotransmission. Mutations in or reduced expression of GRM7 have been identified in different genetic neurodevelopmental disorders (NDDs), and rare biallelic missense variants have been proposed to underlie a subset of NDDs. Clinical GRM7 variants have been associated with a range of symptoms consistent with neurodevelopmental molecular features, including hypomyelination, brain atrophy and defects in axon outgrowth. Here, we review the newest findings regarding the cellular and molecular defects caused by GRM7 variants in NDD patients.


Receptors, Metabotropic Glutamate , Humans , Mutation , Receptors, Metabotropic Glutamate/genetics , Receptors, Metabotropic Glutamate/metabolism
16.
J Neurodev Disord ; 15(1): 14, 2023 04 29.
Article En | MEDLINE | ID: mdl-37120522

BACKGROUND: Neurodevelopmental disorders (NDDs), such as attention deficit hyperactivity disorder (ADHD) and autism spectrum disorder (ASD), are examples of complex and partially overlapping phenotypes that often lack definitive corroborating genetic information. ADHD and ASD have complex genetic associations implicated by rare recurrent copy number variations (CNVs). Both of these NDDs have been shown to share similar biological etiologies as well as genetic pleiotropy. METHODS: Platforms aimed at investigating genetic-based associations, such as high-density microarray technologies, have been groundbreaking techniques in the field of complex diseases, aimed at elucidating the underlying disease biology. Previous studies have uncovered CNVs associated with genes within shared candidate genomic networks, including glutamate receptor genes, across multiple different NDDs. To examine shared biological pathways across two of the most common NDDs, we investigated CNVs across 15,689 individuals with ADHD (n = 7920), ASD (n = 4318), or both (n = 3,416), as well as 19,993 controls. Cases and controls were matched by genotype array (i.e., Illumina array versions). Three case-control association studies each calculated and compared the observed vs. expected frequency of CNVs across individual genes, loci, pathways, and gene networks. Quality control measures of confidence in CNV-calling, prior to association analyses, included visual inspection of genotype and hybridization intensity. RESULTS: Here, we report results from CNV analysis in search for individual genes, loci, pathways, and gene networks. To extend our previous observations implicating a key role of the metabotropic glutamate receptor (mGluR) network in both ADHD and autism, we exhaustively queried patients with ASD and/or ADHD for CNVs associated with the 273 genomic regions of interest within the mGluR gene network (genes with one or two degrees protein-protein interaction with mGluR 1-8 genes). Among CNVs in mGluR network genes, we uncovered CNTN4 deletions enriched in NDD cases (P = 3.22E - 26, OR = 2.49). Additionally, we uncovered PRLHR deletions in 40 ADHD cases and 12 controls (P = 5.26E - 13, OR = 8.45) as well as clinically diagnostic relevant 22q11.2 duplications and 16p11.2 duplications in 23 ADHD + ASD cases and 9 controls (P = 4.08E - 13, OR = 15.05) and 22q11.2 duplications in 34 ADHD + ASD cases and 51 controls (P = 9.21E - 9, OR = 3.93); those control samples were not with previous 22qDS diagnosis in their EHR records. CONCLUSION: Together, these results suggest that disruption in neuronal cell-adhesion pathways confers significant risk to NDDs and showcase that rare recurrent CNVs in CNTN4, 22q11.2, and 16p11.2 are overrepresented in NDDs that constitute patients predominantly suffering from ADHD and ASD. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT02286817 First Posted: 10 November 14, ClinicalTrials.gov Identifier: NCT02777931 first posted: 19 May 2016, ClinicalTrials.gov Identifier: NCT03006367 first posted: 30 December 2016, ClinicalTrials.gov Identifier: NCT02895906 first posted: 12 September 2016.


Autism Spectrum Disorder , Receptors, Metabotropic Glutamate , Humans , Autism Spectrum Disorder/genetics , DNA Copy Number Variations/genetics , Genetic Predisposition to Disease , Genome-Wide Association Study , Receptors, Metabotropic Glutamate/genetics
17.
J Biol Chem ; 299(4): 103030, 2023 04.
Article En | MEDLINE | ID: mdl-36806686

Upon ligand binding to a G protein-coupled receptor, extracellular signals are transmitted into a cell through sets of residue interactions that translate ligand binding into structural rearrangements. These interactions needed for functions impose evolutionary constraints so that, on occasion, mutations in one position may be compensated by other mutations at functionally coupled positions. To quantify the impact of amino acid substitutions in the context of major evolutionary divergence in the G protein-coupled receptor subfamily of metabotropic glutamate receptors (mGluRs), we combined two phylogenetic-based algorithms, Evolutionary Trace and covariation Evolutionary Trace, to infer potential structure-function couplings and roles in mGluRs. We found a subset of evolutionarily important residues at known functional sites and evidence of coupling among distinct structural clusters in mGluR. In addition, experimental mutagenesis and functional assays confirmed that some highly covariant residues are coupled, revealing their synergy. Collectively, these findings inform a critical step toward understanding the molecular and structural basis of amino acid variation patterns within mGluRs and provide insight for drug development, protein engineering, and analysis of naturally occurring variants.


Receptors, Metabotropic Glutamate , Receptors, Metabotropic Glutamate/genetics , Receptors, Metabotropic Glutamate/metabolism , Binding Sites , Phylogeny , Ligands , Receptors, G-Protein-Coupled/genetics
18.
Int J Mol Sci ; 24(2)2023 Jan 12.
Article En | MEDLINE | ID: mdl-36675067

Metabotropic glutamate receptor 1 (mGluR1) plays a crucial role in slow excitatory postsynaptic conductance, synapse formation, synaptic plasticity, and motor control. The GRM1 gene is expressed mainly in the brain, with the highest expression in the cerebellum. Mutations in the GRM1 gene have previously been known to cause autosomal recessive and autosomal dominant spinocerebellar ataxias. In this study, whole-exome sequencing of a patient from a family of Azerbaijani origin with a diagnosis of congenital cerebellar ataxia was performed, and a new homozygous missense mutation in the GRM1 gene was identified. The mutation leads to the homozygous amino acid substitution of p.Thr824Arg in an evolutionarily highly conserved region encoding the transmembrane domain 7, which is critical for ligand binding and modulating of receptor activity. This is the first report in which a mutation has been identified in the last transmembrane domain of the mGluR1, causing a congenital autosomal recessive form of cerebellar ataxia with no obvious intellectual disability. Additionally, we summarized all known presumable pathogenic genetic variants in the GRM1 gene to date. We demonstrated that multiple rare variants in the GRM1 underlie a broad diversity of clinical neurological and behavioral phenotypes depending on the nature and protein topology of the mutation.


Cerebellar Ataxia , Intellectual Disability , Receptors, Metabotropic Glutamate , Spinocerebellar Degenerations , Humans , Cerebellar Ataxia/congenital , Cerebellar Ataxia/diagnosis , Cerebellar Ataxia/genetics , Intellectual Disability/genetics , Mutation , Pedigree , Receptors, Metabotropic Glutamate/genetics , Spinocerebellar Degenerations/congenital , Spinocerebellar Degenerations/genetics
19.
Pediatr Res ; 93(7): 1865-1872, 2023 Jun.
Article En | MEDLINE | ID: mdl-36280709

BACKGROUND: Neonatal hypoxic-ischemic encephalopathy (HIE) is a kind of brain injury that causes severe neurological disorders in newborns. Metabotropic glutamate receptors (mGluRs) and ionotropic glutamate receptors (iGluRs) are significantly associated with HIE and are involved in ischemia-induced excitotoxicity. This study aimed to investigate the upstream mechanisms of mGluRs and the transcriptional regulation by nuclear respiratory factor 1 (NRF1). METHODS: The rat model of neonatal HIE was created using unilateral carotid artery ligation and in vitro oxygen-glucose deprivation paradigm. We used western blot, immunofluorescence, Nissl staining, and Morris water maze to investigate the impact of NRF1 on brain damage and learning memory deficit by HIE. We performed ChIP and luciferase activities to identify the transcriptional regulation of NRF1 on mGluRs. RESULTS: The neuronal NRF1 and some glutamatergic genes expression synchronously declined in infarcted tissues. The NRF1 overexpression effectively restored the expression of some glutamatergic genes and improved cognitive performance. NRF1 regulated some members of mGluRs and iGluRs in hypoxic-ischemic neurons. Finally, NRF1 is bound to the promoter regions of Grm1, Grm2, and Grm8 to activate their transcription. CONCLUSIONS: NRF1 is involved in the pathology of the neonatal HIE rat model, suggesting a novel therapeutic approach to neonatal HIE. IMPACT: NRF1 and some glutamatergic genes were synchronously downregulated in the infarcted brain of the neonatal HIE rat model. NRF1 overexpression could rescue cognitive impairment caused by the neonatal HIE rat model. NRF1 regulated the expressions of Grm1, Grm2, and Grm8, which activated their transcription by binding to the promoter regions.


Brain Injuries , Hypoxia-Ischemia, Brain , Receptors, Metabotropic Glutamate , Animals , Rats , Animals, Newborn , Nuclear Respiratory Factor 1/metabolism , Hypoxia-Ischemia, Brain/pathology , Gene Expression Regulation , Brain Injuries/complications , Receptors, Metabotropic Glutamate/genetics , Receptors, Metabotropic Glutamate/metabolism , Receptors, Metabotropic Glutamate/therapeutic use
20.
Auton Neurosci ; 244: 103053, 2023 01.
Article En | MEDLINE | ID: mdl-36463578

BACKGROUND: The superior cervical ganglion (SCG) plays critical roles in the regulation of blood pressure and cardiac output. Metabotropic glutamate receptors (mGluRs) in the SCG are not clearly elucidated yet. Most studies on the expression and functions of mGluRs in the SCG focused on the cultured SCG neurons, and yet little information has been reported in the SCG tissue. Chronic intermittent hypoxia (CIH), one of the major clinical features of obstructive sleep apnea (OSA) patients, is a critical pathological cause of secondary hypertension in OSA patients, but its impact on the level of mGluRs in the SCG is unknown. OBJECTIVE: To explore the expression and localization of mGluR2/3 and the effect of CIH on mGluR2/3 level in rat SCG tissue. METHODS: RT-PCR and immunostaining were conducted to examine the mRNA and protein expression of mGluR2/3 in rat SCG. Immunofluorescence staining was conducted to examine the distribution of mGluR2/3. Rats were divided into control and CIH group which the rats were exposed to CIH for 6 weeks. Western blots were performed to examine the level of mGluR2/3 in rat SCG. RESULTS: mRNAs of mGluR2/3 expressed in rat SCG. mGluR2 distributed in principal neurons and small intensely fluorescent cells but not in satellite glial cells, nerve fibers, and vascular endothelial cells; mGluR3 was detected in nerve fibers rather than in the cells mentioned above. CIH exposure reduced the protein level of mGluR2/3 in rat SCG. CONCLUSION: mGluR2/3 exists in rat SCG with diverse distribution patterns, and may be involved in CIH-induced hypertension.


Hypertension , Receptors, Metabotropic Glutamate , Sleep Apnea, Obstructive , Superior Cervical Ganglion , Animals , Rats , Endothelial Cells/metabolism , Hypertension/metabolism , Receptors, Metabotropic Glutamate/genetics , Receptors, Metabotropic Glutamate/metabolism , RNA, Messenger/metabolism , Sleep Apnea, Obstructive/metabolism , Superior Cervical Ganglion/metabolism , Hypoxia/metabolism
...